Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 16(11): e0010833, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441823

RESUMO

Tsetse flies (Glossina spp.) feed exclusively on vertebrate blood. After a blood meal, the enteric endosymbiont Sodalis glossinidius is exposed to various environmental stressors including high levels of heme. To investigate how S. glossinidius morsitans (Sgm), the Sodalis subspecies that resides within the gut of G. morsitans, tolerates the heme-induced oxidative environment of tsetse's midgut, we used RNAseq to identify bacterial genes that are differentially expressed in cells cultured in high versus lower heme environments. Our analysis identified 436 genes that were significantly differentially expressed (> or < 2-fold) in the presence of high heme [219 heme-induced genes (HIGs) and 217 heme-repressed genes (HRGs)]. HIGs were enriched in Gene Ontology (GO) terms related to regulation of a variety of biological functions, including gene expression and metabolic processes. We observed that 11 out of 13 Sgm genes that were heme regulated in vitro were similarly regulated in bacteria that resided within tsetse's midgut 24 hr (high heme environment) and 96 hr (low heme environment) after the flies had consumed a blood meal. We used intron mutagenesis to make insertion mutations in 12 Sgm HIGs and observed no significant change in growth in vitro in any of the mutant strains in high versus low heme conditions. However, Sgm strains that carried mutations in genes encoding a putative undefined phosphotransferase sugar (PTS) system component (SG2427), fucose transporter (SG0182), bacterioferritin (SG2280), and a DNA-binding protein (SGP1-0002), presented growth and/or survival defects in tsetse midguts as compared to normal Sgm. These findings suggest that the uptake up of sugars and storage of iron represent strategies that Sgm employs to successfully reside within the high heme environment of its tsetse host's midgut. Our results are of epidemiological relevance, as many hematophagous arthropods house gut-associated bacteria that mediate their host's competency as a vector of disease-causing pathogens.


Assuntos
Moscas Tsé-Tsé , Animais , Moscas Tsé-Tsé/genética , Heme
2.
Int J Gen Med ; 13: 1175-1186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33235489

RESUMO

Cystic fibrosis (CF) is a genetic disease in which consistent follow-up care is required to avoid a decline in pulmonary and nutritional health. It is believed that if a CF patient ceases treatment for 2 days, this can result in an exacerbation. One week of missed treatments can result in a hospitalization and 1 month of missed treatments can result in an earlier demise. With a global pandemic that has affected more than 9 million people, many CF clinics were required to take steps to avoid transmission of this dangerous virus. This may result in delays in delivery of timely CF care due to closure of clinics and pulmonary function testing (PFT) laboratories and limited staff allowed on site for conducting in-person visits. These measures, along with suggestions from the Cystic Fibrosis Foundation (CFF) to extend the social distancing longer than traditional CDC recommendations for the CF community, create an urgent need to explore novel ways to deliver safer care via new standards in chronic health conditions like CF. Especially, as these preventive strategies may be necessary for long-term maintenance, few objective alternatives exist to guide clinicians and allied health professionals in CF centers how to proceed in this new era. This also presents an opportunity for novel approaches that could improve delivery of CF care with remote monitoring and real-time delivery of care in patients' home environments. Such emerging approaches could benefit patient care, leading to reduced costs and readmissions and improved access to care, medication adherence, and patient communication. We summarize our own experience and discuss the emerging delivery of CF care which can be generalizable to other pulmonary illnesses.

3.
PLoS Negl Trop Dis ; 13(11): e0007464, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738754

RESUMO

Tsetse flies (Diptera: Glossinidae) house a taxonomically diverse microbiota that includes environmentally acquired bacteria, maternally transmitted symbiotic bacteria, and pathogenic African trypanosomes. Sodalis glossinidius, which is a facultative symbiont that resides intra and extracellularly within multiple tsetse tissues, has been implicated as a mediator of trypanosome infection establishment in the fly's gut. Tsetse's gut-associated population of Sodalis are subjected to marked temperature fluctuations each time their ectothermic fly host imbibes vertebrate blood. The molecular mechanisms that Sodalis employs to deal with this heat stress are unknown. In this study, we examined the thermal tolerance and heat shock response of Sodalis. When grown on BHI agar plates, the bacterium exhibited the most prolific growth at 25oC, and did not grow at temperatures above 30oC. Growth on BHI agar plates at 31°C was dependent on either the addition of blood to the agar or reduction in oxygen levels. Sodalis was viable in liquid cultures for 24 hours at 30oC, but began to die upon further exposure. The rate of death increased with increased temperature. Similarly, Sodalis was able to survive for 48 hours within tsetse flies housed at 30oC, while a higher temperature (37oC) was lethal. Sodalis' genome contains homologues of the heat shock chaperone protein-encoding genes dnaK, dnaJ, and grpE, and their expression was up-regulated in thermally stressed Sodalis, both in vitro and in vivo within tsetse fly midguts. Arrested growth of E. coli dnaK, dnaJ, or grpE mutants under thermal stress was reversed when the cells were transformed with a low copy plasmid that encoded the Sodalis homologues of these genes. The information contained in this study provides insight into how arthropod vector enteric commensals, many of which mediate their host's ability to transmit pathogens, mitigate heat shock associated with the ingestion of a blood meal.


Assuntos
Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/fisiologia , Estresse Fisiológico , Temperatura , Moscas Tsé-Tsé/microbiologia , Animais , Bactérias , Proteínas de Bactérias/genética , Técnicas de Cultura de Células , Enterobacteriaceae/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Cinética , Simbiose , Termotolerância , Trypanosoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...